Exercise 36

Find equations of the tangent lines to the curve

$$
y=\frac{2}{1-3 x}
$$

at the points with x-coordinates 0 and -1 .

Solution

Start by finding the points on the curve with these x-coordinates.

$$
\begin{array}{llll}
x=0: & y=\frac{2}{1-3(0)}=2 & \Rightarrow & (0,2) \\
x=-1: & y=\frac{2}{1-3(-1)}=\frac{1}{2} & \Rightarrow & \left(-1, \frac{1}{2}\right)
\end{array}
$$

The slopes of the tangent lines to $y=2 /(1-3 x)$ at the points, $(0,2)$ and $\left(-1, \frac{1}{2}\right)$, are found by calculating the derivative of $y=f(x)$ and then setting $x=0$ and $x=-1$, respectively. Use the definition of $f^{\prime}(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2}{1-3(x+h)}-\frac{2}{1-3 x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2}{1-3 x-3 h}-\frac{2}{1-3 x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2(1-3 x)}{(1-3 x)(1-3 x-3 h)}-\frac{2(1-3 x-3 h)}{(1-3 x)(1-3 x-3 h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2(1-3 x)-2(1-3 x-3 h)}{(1-3 x)(1-3 x-3 h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2(1-3 x)-2(1-3 x-3 h)}{h(1-3 x)(1-3 x-3 h)} \\
& =\lim _{h \rightarrow 0} \frac{(2-6 x)-(2-6 x-6 h)}{h(1-3 x)(1-3 x-3 h)} \\
& =\lim _{h \rightarrow 0} \frac{6 h}{h(1-3 x)(1-3 x-3 h)} \\
& =\lim _{h \rightarrow 0} \frac{6}{(1-3 x)(1-3 x-3 h)}
\end{aligned}
$$

Evaluate the limit by setting $h=0$.

$$
f^{\prime}(x)=\frac{6}{(1-3 x)^{2}}
$$

Therefore, the slopes at $(0,2)$ and $\left(-1, \frac{1}{2}\right)$ are, respectively,

$$
f^{\prime}(0)=\frac{6}{(1)^{2}}=6 \quad \text { and } \quad f^{\prime}(-1)=\frac{6}{(1+3)^{2}}=\frac{3}{8}
$$

To determine the equations of the lines, use the points, these slopes, and the point-slope formula.

$$
\begin{aligned}
& y-2=6(x-0) \quad y-\frac{1}{2}=\frac{3}{8}(x+1) \\
& y-2=6 x \\
& y-\frac{1}{2}=\frac{3}{8} x+\frac{3}{8} \\
& y=6 x+2 \\
& y=\frac{3}{8} x+\frac{7}{8}
\end{aligned}
$$

Below is a graph of $y=6 x+2, y=\frac{3}{8} x+\frac{7}{8}$, and $y=\frac{2}{1-3 x}$ versus x. Notice that the lines are tangent to the curve at $x=-1$ and $x=0$.

